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Abstract

The mathematical modeling of the unsaturated flow problem requires the
simultaneous resolution of two problems: the Richards equation and the es-
timation of the hydraulic parameters involved in hydraulic conductivity and
in the retention curve. Various techniques have been applied to both prob-
lems in a wide range of situations. In this article, a novel implementation
of the processing techniques involved in copper heap leaching is presented.
Specifically, the impact of the used numerical method and the selection of

the parametric family are evaluated. From a methodological point of view,
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a global algorithm is proposed that integrates the solutions of both prob-
lems. Finally, our computational experiments are compared with previous
experimental results from the Chilean copper mining industry and related

works.
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1. Introduction

Leaching is a method of extraction in which a solvent is passed through
a mixture to remove some desired substance from it. There are several types
of leaching: heap leaching, vat leaching, dump leaching and in-situ leaching.
In this work the focus is on heap leaching process of copper ores, where the
construction of the heap is preceded by a crushing and agglomeration process
that determines the hydrodynamic properties of the stack: mechanical sta-
bility, particle size, porosity, and permeability. Two distinct phenomena are
of interest in the study of heap leaching: fluid flow and the physicochemical
reactions. In this paper the estimation of the hydraulic parameters under
unsaturated flow conditions is considered [7].

From a macroscopic point of view, the mathematical modeling of flow
and transport in porous media requires the resolution of two main problems:
the Differential Equation (DP), and the Parameters Estimation (PE). For
both problems, there are several techniques that have been applied in a wide
range of situations.

The HeapSim code [6, 14] is a part of the bioleaching model, in which
the estimation of different types of parameters is performed by varying one

parameter at a time and adjusting regression curves by the least squares



method. The process of estimation in this program is primarily empirical and
relies heavily on the expertise of the user. For completeness, we mention [13]
where a parameter estimation under saturated flow conditions was performed,
and (3, 2, 4] for a brief discussion of the hydraulic parameters for two phase
flow in copper heap leaching.

In [10], the fluid flow problem was modeled under unsaturated condi-
tions in copper column leaching, the Richards equation was solved with a
finite difference scheme, and the parameters were estimated with the Sim-
plex Search method. Additionally, in [10] the van Genuchten family was
applied, with a constant irrigation rate. In [16] the fluid flow problem was
also modeled under unsaturated conditions in a copper heap and in column
leaching, the Richards equation was solved with a finite difference scheme,
and the parameters were estimated by means of fitting regression curves.
In [16], a combination of the van Genuchten model along with the Brooks-
Corey model was considered, but no adequate justification for this choice
was presented. Moreover, in [16] the experimental data outflow from a semi-
industrial heap leaching was considered. The simulation was based on a one
dimensional mathematical model. Unfortunately, the observed outflow was
compared only with the average simulated flow and did not consider daily
fluctuations in outflow or the variable irrigation rates. In [12], the fluid flow
problem was also modeled under unsaturated conditions in a copper leach
pad. The Richards equation and the parameters estimation problems were
solved with Hydrus 2D software (cf. [15]). The simulated outflow in [12]
considers the variable irrigation rate and daily fluctuations of the outflow,

achieving a proper fit to the experimental data. To the best of our knowledge,



[10, 12] and [16] are the only works that have been conducted in this area.
This paper provides a novel application of DP and PE problems to copper
heap leaching under unsaturated flow conditions. In the DP problem, the
Richards equation is solved with the same numerical scheme applied in [10].
The PE problem is solved with the Levenberg-Marquardt algorithm (cf. [9])
from the MATLAB optimization toolbox, [17].

The main objective of this work is to provide a global algorithm that con-
siders the solution of both problems in a way that is easy to implement by
the mining industry. This article describes an advantageous method for the
estimation of hydraulic parameters. We present a global algorithm that inte-
grates the numerical solution of the Richards equation with the optimization
method and provides a numerical error estimation.

We have organized this article into six sections. Section 2 presents the
model problem. In Section 3, the numerical solution of the Richards equation
is presented. In Section 4, the Global Algorithm of estimation is developed,
which combines the optimization and differential problems. Section 5 reports

five computational experiments, and Section 6 presents the main conclusions.

2. Model Problem

Figure 1 represents a leaching column of length H > 0 that is wet with a
liquid irrigation rate R(t) > 0. At the base of the column, the experimental

outflow ¢,, is measured at specific time intervals ¢, [ € {1,..., N}.
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Figure 1. Mathematical Domain.

If & = 0(z,t) is the moisture content (that is, the fraction of the soil’s bulk
volume occupied by water [1]) in the column at the height z € [0, H] (the
spatial coordinate z is positive in the downward direction) at time ¢ € [0, T7,
then according to the mass conservation law, and Darcy’s law, the Richards

equation (cf. [1] for detailed derivation of this equation) becomes,

with the initial and boundary conditions,

ezemitml in tIO, z>0 (2)
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—D(9)$+K(«9):R(t) in z=0,t>0 (3)
00 :
@—Om z2=H ,t>0 (4)
where the hydraulic conductivity K (6), the diffusivity D(0) = K(0)/%, and

the retention curve h(f) are all non-linear functions, 6,4 is the initial
volumetric water content, and h is the soil water potential.

The differential problem (DP) consists of obtaining an approximation of
6 on the rectangle [0, H] x [0, T, from equation (1), under conditions (2), (3)
and (4).

Remark 1. With respect to the functions K(6) and h(6), in this work the

following two parametric families will be considered:

1. Family VG. This parametric family corresponds to van Genuchten

which is defined as [§]:

K@) = K50 (1-(1-5%0)") (5)

I
SO = G T T ™ °

where K is the saturated hydraulic conductivity of porous media, 0, is
the residual volumetric content of liquid, 6 is the volumetric content
of liquid saturation, and m = 1 — %,n > 1 and a > 0 are the van

Genuchten parameters.

2. Family VGM. This parametric family corresponds to a modification



of van Genuchten [8], which was applied in [4, 16]. Specifically,

K(0) = K.5°(0) (7)

)6, !
SO = S T ar e (8)

Wheremzl—%,and5:3+%.

Note that the family VGM is a combination of van Genuchten and Brooks-
Corey models [1].

3. Numerical Solution of the Richards Equation

The numerical solution of equation (1) is based on the finite difference
method, specifically, the Crank-Nicolson modified method (cf. [5]). The
election of this method follows [10] to enable a better comparison with our
computational experiments.

Let [0, H] be the spatial domain and [0, 7’| the temporal domain. Let Nz
and Nt be the number of subintervals for [0, H] and [0, T, respectively. We
define Az := H/Nz, At := T/Nt, and ¢ is an approximation of #(iAz, jAt),
with i € {0,..., Nz} and j € {0, ..., Nt}. Therefore, the discretization of (1),
for i € {0,..., Nz} and j € {0, ..., Nt — 1}, is given by:

gt g 1 . .
St =5 (BT Bl -

=5 (FT R, (9)
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where,
Dy (05 0" = Dy - (07 -6
b (Az)?
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D! .= D(#) and K7 := K(#). With respect to the boundary conditions,

the discrete version of (3), that is, for i = 0, is given by

(65— 62,)

_pito =)
O Az

On the other hand, the discrete version of (4), that is, for i = Nz, is given

by

+ K] =R, ¥j=0,.., Nt (10)

[ —l
W:o, Vj=0,.., Nt (11)
z

where the unknowns ¢’ | and 6%, ., are auxiliary unknowns.

The Crank-Nicolson method is a second order method on time [5]. By
another hand, the discretization in space is at most first order as the diffusion
coefficients are not constant. For this reason the first-order discretization (10)
and (11) is sufficient.

The matrix form of the nonlinear system (9), for j € {0,..., Nt — 1} and
i €40,..., Nz}, is given by

A(9j+1)9j+1 — b(@j) + C(Qj—irl)’ (12)



where 0741 = (6771) (v.11)x1 and the entries of A(67+1), b(67) and c(67*") are

defined as follows. The matrix A = A(07*!)(no41)x(v241) 18 given by

1+ wi(Dgy + Dpy) —w1Dyyp 0
—w1 Dy 1+wi(Dyy + Dpy) —wiDyy 0
A=
0 —wi1 Dyy 1+ w1 (Dysy + Dypy) —w1Dyy
0 —w1Dyy 1+ wi(Dyys + Dpy)
At . o ; .
where w; = AT The entries of b = b(67)(n241)x1, for i € {0,..., Nz}, are
given by

bisr = 0] +wi[Dy(0],, — 07) = Dy(0] — 0]_)] — wa( K], — K])),

(2

where wy := AL, and the entries of ¢ = ¢(07*!)(n.11)x1, for i € {0, ..., Nz}

are
Civ1 = —w2(Kz‘]::1l - ngf)-
In particular, note that for i = 0
o1 = —wa(K{ ™ — K21Y) +wn Dy
e

where is computed from the boundary condition (10), and for i = Nz

CNz+1 = _w2(KJjVJ;£rl - szvtl—l) + wlfoegV—ii‘rl?
where 9%;11 is computed from the boundary condition (11).

Remark 2. The system in (12) is implicit in time and will be solved by a
corrector-predictor method. Specifically, in this work we consider two ver-

sions for this method:



1. Version CP1. This version corresponds to the method applied in [10].
For j € {0, ..., Nt — 1}, the system solved is

A(ej)eaux = b(e]) + C(ej)> (13)
for 0,,, and then 67! is computed from
A(Opue) T = b(07) + c(Oguz). (14)

2. Version CP2. This version corresponds to the method applied in [5].
For j € {0, ..., Nt — 1}, the vector 6, is computed from

A(09)0, = b(67) + () (15)

where 6, is a prediction of 677!, Next, 6. which is a correction of 6, is

calculated from

A(6,)0. = b(67) + c(6,), (16)

which is a correction that is acceptable as an estimation of #7*! when
IA(e)0e — (b(67) + c(be)) |2 < e, (17)

where € is a user’s value; otherwise, 6, = 6., where 6, is computed again

from (16) until (17) is satisfied. In this case,
6t =0,

Note that the application of CP1 and CP2 is based in the resolution of a
linear tridiagonal system (12) which is diagonal dominant. This system was
solved with the Thomas algorithm [5], which is based on a LU factorization

when is applied to a tridiagonal matrix.
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4. Global Algorithm of Parameter Estimation

In this work the parameter vector considered is (a,n) (cf. Remark 1).
Comparing the experimental outflow ¢,, { = 1,..., N with the numerical
solutions of the DP: ¢(6; (a,n)) = —D(; (a,n)) 9% + K(6; (a,n)) (maintain-
ing the same notation for discrete and continuous solutions), the objective
function is defined as

o) =3 (4~ ilOi(m)) (18)
1=1
where G(6;((ov,n))) is the numerical outflow estimated in #;, with [ = 1, ..., N.
Note that the outflow is measured at the bottom of the domain, z = H, where
the boundary condition (4) applies. Thus, the expression for ¢(0; (o, n)) is
q(0; (a,n)) = K(0; (ar,n)) on z = H.

The minimization of the function (18) is based on the Levenberg-Marquardt
algorithm, which will be applied using the MATLAB function lsqnonlin (cf.
[17]), which is based on [11]. A complete analysis of the convergence and a
detailed discussion of the computational implementation of the algorithm is
presented in [9] and was also discussed in [11]. Here, the primary application
of the Levenberg-Marquardt algorithm is curve fitting using the least squares
method.

The input for the optimization algorithm of (18) are: ¢, (vector of experi-
mental flow), (ao, ng) (vector of initial values), T (length of temporal interval
of simulation for DP), H (height of leaching column), and Nt and Nz (the
size of partitions in time and space, respectively). This data is applied to
Isqnonlin and the output is the vector (qopt, Nopt), Wwhere Q(a, n) is minimum.

Figure 2 describes the computational structure of the routine and its

11



subroutines by showing the order in which the calculations are made and the
order in which the functions are used, where the g function is a MATLAB

function that computes the vector r and its components

r(0(a,n)) = qo, — ¢(Oi(c,n)), 1=1,...,N.
After the incorporation of the specified data by the user in Section 5, the
Isqnonlin function is invoked, which in turn invokes the ¢ function (m-function
created by the user), which in turn invokes the subroutine Solve DP. This
process is repeated as many times as seems necessary by the function lsqgnon-

lin.

12
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Figure 2. Flowchart of the Global Estimation Algorithm.

The subroutine Solve (DP), which is detailed in Figure 3, takes the data
from the qfunction and solves the Richards equation. Specifically, applies
de Predictor-Corrector method and the Thomas’s algorithm (cf. Section 3

and Remark 2).
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Figure 3. Flowchart for subroutine Solve (DP)

5. Computational Experiments

The copper heap in Tranque Barahona, Chile that was researched in ar-
ticles [12, 16] was also investigated for this article. The heap is 550 ¢m high,
220 ¢m wide, and has a base of length 500 c¢m, with lateral slopes 1:1. Drip
irrigation was conducted on a surface of 308 m?. Additionally, a programmed
variable irrigation was applied to the heap for 44 days. For more details see
Table 1 (where vG is used as acronym for van Genuchten).

In experiments 1, 2, 3 and 4, (see sections 5.1, 5.2, 5.3, and 5.4, respec-
tively) the parametric family VGM defined by (7) and (8) was considered.

In experiment 5 (see section 5.5), the parametric family VG defined by (5)

14



Parameter Symbol Value
Total Time T 44 [day]
Height H 550 [em]
Initial Moisture Oinitiar | 0.14 [em3 /em?)
Saturated Moisture 7 0.33 [em®/cm?]
Residual Moisture 6, 0 [em?®/cm?)
Saturated Hydraulic Conductivity K 170 [em/day]
vG Parameter o 0.035 [1/cm)]
vG Parameter n 2.267
Size of Time Step At 1/24 [day]
Size of Space Step Az 2.5 [em]

Table 1: Simulation Parameters

and (6) was considered (cf. Remark 1).

5.1. Fxperiment 1

In this experiment only the DP problem was solved, that is, the Richards
equation, following the parameters outlined in Table 1. The values of the
van Genuchten parameters were (ap,n;) = (0.035,2.267). The parametric
family utilized was VGM: (7)-(8), and the corrector-predictor method was
CP1: (13)-(14). In Experiment 1, the numerical value of the relative residual

norm 1s

100 - [lgo — G(0(r, 1) 1o/ | aoll2 = 47.39%,

where ||g,||2 = 133.4280[m?/day].

Figure 4 contains the evolution of influent, efHuent and modeled flows.

15
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Figure 4. Measured and Modeled Outflow in Experiment 1

In Figure 4, we can see that the model is better adjusted to the observed
outflow from the 14 day simulation, and this situation is maintained until

day 42.

5.2. Experiment 2

In this experiment, we performed the Global Estimation Algorithm, as
described in Figure 2. The data in Table 1 was used except for the vG param-
eters vector, which was changed by the initial parameter vector (ag,ng) =
(0.035,2.315). The parametric family utilized was VGM: (7)-(8), and the
corrector-predictor method was CP1: (13)-(14). The results are summarized
in Table 2, where aype and ngpye are the optimal values obtained with the
Levenberg-Marquardt algorithm. The observed influent and effluent versus
the estimated outflow with the optimal parameters is similar to Experiment

1 (to see Figura 4). In Table 2, one iteration includes the evaluation of the

16



Parameter Value

ap 0.035 [1/cm)]

no 2.315
Qopt2 0.049 [1/cm)]
Plopt2 2.230

~

1g0 — G(B(ctop2, opea)) |2 | 55.3768 [m?/day]
N iterations 15

Mean time by iteration 890 [s]

Table 2: Optimal Values for a and n in Experiment 2

qfunction by Ilsqnonlin and the solution of the DP. This process takes ap-
proximately 890 [s] . In Experiment 2, the numerical value of the relative

residual norm is

A~

100 - |0 — G(O(toptas Mopi2))|12/ || @oll2 = 41.50%.

5.3. Experiment 3

This experiment is a continuation of Experiment 2. In Experiment 3, the
impact of changing the size of the steps in space and time is evaluated. Four
tests were performed with the same data in Table 1, with a, n, At and Az
reported in Table 3. The data concerning the residual norms, the number of
iterations, and the mean time elapsed are located in Table 4. In these four
tests, the initial vector parameters were (ag,ng) = (0.035,2.315).

The results of Experiment 3 show that the initial values Az = 2.5[c¢m] and
At = 1/24][day] are suitable, this is, are sufficiently small. The only impact

observed after reducing the values of Az and At was an increase in the mean

17



time of calculation. The decrease of the relative residual norm was only
marginal. In tests 1 to 4 the parameters estimated were o3 = 0.04999999
and 13 = 2.2300000, where only the first four decimal places are physically
significant. Finally, note that the differences observed between 9 and 14

decimal places can be explained by the internal computer arithmetic.

Test JAN Az (Ctopt3, Mopt3)
1 - [day] | 2.5 [em] | (0.04999999823866, 2.23000002251736)
2 | 55 [day] | 2.0 [em] | (0.04999999999996, 2.23000000000012)
3 | 35 [day] | 1.5 [em] | (0.04999999780221, 2.23000004077647)
4 | & [day] | 1.0 [em] | (0.04999999738890, 2.23000004007278)

Table 3: Optimal Values in Experiment 3

Test | Relative Residual Norm | Iterations | Mean Time
1 41.50% 15 890 [s]
2 40.59% 18 2326 [s]
3 40.27% 15 3590 [s]
4 40.02% 15 5229 [s]

Table 4: Residual Norm, Iterations, and Mean Time in Experiment 3

The observed influent and effluent versus the estimated outflow in test 1,2,3

and 4, is similar to Experiment 1 (to see Figure 4).

5.4. Ezxperiment 4

In this experiment the impact of corrector-predictor method (cf. Re-

mark 2) is evaluated. The parametric family utilized was VGM: (7)-(8), and

18



the corrector-predictor method was CP2: (15)-(16). In Figure 5, the same
comparison between the influent and effluent experimental flows, and the
simulated outflow is made, but with the under improved corrector-predictor
method (cf. Remark 2 and compare the Figures 4 and 5).

o =0.01y n=2201
50 T T T

: : : : : Model
R St RELLEE Jamaet et et *  Effluent 1
: . H . ' @  Influent

e T e e e
35
30

25

Caudal [m3/day)

20

15

10

() e l ,J:l: 4 i i i i i i
0 g R T 20 25 30 35 40 45

Time, [days]

Figure 5. Measured and Modeled Outflow in Experiment 4

The new optimal parameters vector is (qopia, nopra) = (0.01,2.201).

In Experiment 4, the numerical value of the relative residual norm is

100 - flgo — G(6(topra, mopea)) 12/ 11 oll2 = 29.01%.

5.5. Experiment 5

Experiment 5 reports the results of two main modifications made to the
previous results. The parametric family utilized was VG: (5)-(6), and the
corrector-predictor method was CP2: (15)-(16). Under these new condi-

tions, the optimal parameter vector was (Qopts, Nopts) = (0.013,1.306). In

19



Experiment 5, the numerical value of the relative residual norm is

~

100 - qu - Cj(e(aoptfnnopt5))||2/||q0“2 == 349%

Figure 6 shows the experimental data and the estimated data. The improved
conditions were compared with the works [10, 12, 16].

The purpose of experiment 4 was to evaluate the impact of replace the
method CP1 by CP2. The results of experiment 4 were compared with of
experiment 2, showing a decrease of 12.49 (= 41.5-29.01) percentage points of
relative error. On the other hand, the purpose of experiment 5 was to evalu-
ate the impact of replace simultaneously the parametric family VGM by VG,
and the method CP1 by CP2. The results of experiment 5 were compared
with the experiment 2, showing a reduction of 38.01 (= 41.50-3.49) percent-
age points of relative error. This significant reduction of 38.01 percentage
points of relative error, can be partially explained by the impact of chang-
ing simultaneously the method CP1 by CP2, and family VGM by VG. The
simulations obtained show the importance of evaluating different parametric
families (VG, VGM, or other) for a better fit of the model. Indeed, given
different functional expressions is expected that adjustment levels between
simulations and experimental data are not the same.

In [12], the heap was divided into three layers (top, middle and bot-
tom), and the estimation of the van Genuchten parameters, o and n, were
made for each of these layers. For the parameter «, the values obtained
were 0.03023[1/¢em], 0.01368[1/cm], and 0.07060[1/cm], respectively. For the
parameter n, the values obtained were 1.265[—], 1.411[—] and 1.200[—], re-
spectively. Therefore, our estimates of (vpis, Nops) = (0.013,1.306) correlate

well with those obtained with the Hydrus Software 2D. However, the error

20
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Figure 7. Retention Curve h(f) in Experiment 5
Finally, Figure 7 shows the Retention Curve (6) with the same data and



under the same conditions as in Figure 6.

6. Conclusions

In this paper, the problem associated with the parametric estimation
from the soil water retention curve and the hydraulic conductivity function,
has been solved in the context of mathematical modeling of the fluid flow in
copper heap leaching, under unsaturated conditions.

In relation to the numerical solution of the algebraic nonlinear system
from the discretization of the Richards equation, we evaluated two cases:
first, the corrector-predictor method in [10], and second, a better version of
the same method. With respect to the parametric families, we evaluated two
cases: a combination of the van Genuchten and Brooks-Corey models follow-
ing [4, 16], as well as the van Genuchten family following [10, 12]. The opti-
mization problem was solved with the Levenberg-Marquardt algorithm taken
from MATLAB. All simulations were compared with experimental data, so
that our method would have less error associated with it in comparison with
the methods of [2, 4, 10, 12, 16].

This article presents a detailed description of the estimation process and
emphasizes the importance of carefully selecting the parametric family and
the method employed in the numerical solution of the differential problem.
The algorithm developed in this article may be useful in the pre-industrial
stages of the design process of leach pads, especially in the experiments con-
ducted in columns where an efficient and exact estimation of the hydro-
dynamic characteristics assists in the establishment of optimal extraction

conditions on an industrial scale. This work is expected to impact the de-
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cision making process of metallurgical engineers. Indeed, when the outflow
in a leaching pad is simulated, a significant percentage of unexplained vari-
ability in the model can be attributed to the methods of approach and/or
optimization used.

Our main conclusion for the industrial practice is the need to use software
in experimental leaching columns to evaluate: the best solution choice for
the differential problem and different parametric families and, to achieve an
optimum fit to the experimental data obtained in the pre-industrial stage.

We will continue to examine these methods through the repetition of
these tests with different numerical methods, the evaluation of other para-
metric families, the analysis of changes in critical parameters, and through

the evaluation of an the improved version of the optimization algorithm.
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